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Isomorphic probability spaces

We say that the probability spaces (X1, A1, µ1) and
(X2, A2, µ2) are isomorphic if there exist

full measure subsets X ′
i ⊂ Xi , µ(X ′

i ) = 1 and

ϕ : X ′
1

→ X ′
2
invertible measure preserving map.

Theorem 1.1
Let µ be a non-atomic Borel probability measure on a
complete metric space X. Then
(X , B, µ) is isomorphic to ([0, 1], B[0, 1], Leb)
The completion of (X , B, µ) is isomorphic to
([0, 1], L, Leb), where L is the σ-algebra of the Lebesgue
measurable subsets of [0, 1].

Proof: Click here in the pdf file.
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Lebesgue space or Standard probability
space

A probability space (X , A, µ) is a Lebesgue space if it is
isomorphic to the probability space which is the disjoint
union of ([0, s], L[0, s], Leb) for some 0 ≤ s ≤ 1 and at
most countably many atoms. (If there are no atoms then
s = 1.)
Here L[0, s] is the σ-algebra of the Lebesgue measurable
subsets of the interval [0, s].
Be careful: This is an ambiguous notion. The
expression "Lebesgue space" may refer to some special
Banach spaces called Lp spaces.
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Stationary Processes

Definition 2.1 (Polish space)
Polish space is a topological space that is homeomorphic
to a complete metric space which is separable ( has a
countable dense subset).

Fact 2.2
Any two uncountable Polish spaces are Borel isomorphic.
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Definitions

In this Section we always use the following notation:
Let T ⊂ R. Let {St , Bt}t∈T be a family of Polish spaces

(Bt is their Borel σ-algebra). For each finite F ⊂ T
given a Borel probability measure µF on

(SF , BF ) :=




∏

t∈F

St ,
∏

t∈F

Bt




For for all finite set F ⊂ G ⊂ T the canonical projection
from SG to SF is denoted by ProjGF .
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Kolmogorov Consistency Condition

The family {µF : F ⊂ T , finite } . satisfies
Kolmogorov Consistency Condition if for all finite set
F ⊂ G ⊂ T

(1) µF = µG

(
P−1

GFB
)

, ∀B ∈ BF .
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Kolmogorov Extension Theorem

Theorem (Kolmogorov Extension Theorem)

We assume that the
Kolmogorov’s Consistency Condition holds for the
family {µF : F ⊂ T , finite } . Then there is a unique
probability measure µ on the product

(ST , BT ) :=

(
∏

t∈T
St ,

∏

t∈T
Bt

)

which extends each µF .

Károly Simon (TU Budapest) Markov Processes & Martingales D File 9 / 84

Kolmogorov Extension Theorem cont.

Theorem (Kolmogorov Extension Theorem) cont.

That is µ is the unique probablity measure on (ST , BT )
with

(2) µF (B) = µ(P−1

TF (B)) ,

where PTF is the canonical projection from (ST , BT ) to
(SF , BF ).
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Some conventions used in the Section

Assume that we are given sequence {ξk}k∈I of

(S, B)-valued r.v. , where the index set I is either N or
Z. Further, for all k and n1, . . . , nk given the joint
distribution of

(ξn1, . . . , ξnk) .

Moreover, we assume that the conditions of the
Kolmogorov Extension Theorem hold. Hence, we can
consider the infinite product measurable space (Ω, F),
where

(3) Ω := SI , F := BI .

and on it the infinite product σ-algebra F form a
measurable space.
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Some conventions used in the Section

On the measurable space (Ω, F) we can define the
coordinate maps . Namely, for every i ∈ I and ωωω ∈ Ω
let

Xi(ωωω) := ωi .

We say that {Xi}i∈I is the canonical process for

(Ω, F).
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Some conventions used in the Section
(Cont.)

On the measurable space (Ω, F) we denote by P the
measure whose existence in guaranteed by the
Kolmogorov Extension Theorem. In general P is NOT a
product measure (only if ξi are independent).

Corollary 3.1 (Corollary of Kolmorov Extention

Theorem)

The n-th coordinate ωn of a random element ωωω ∈ Ω is
equal to ξn in distribution.
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Stationary Processes

Here we follow Varadhan’s book [24].

Definition 3.2 (Stationary Processes)

Let (S, B) be a Polish space equipped with the σ-algebra
of its Borel sets B. We say that the sequence
{ξi : i ∈ Z} of S-valued random variables is stationary
if for every k ≥ 1, n, n1, . . . nk ∈ Z we have

(4) (ξn1, . . . , ξnk)
d
= (ξn1+n, . . . , ξnk+n) .
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The left shift σ

Let us define σ the left shift on Ω by

(5) σ(ωωω)n := ωn+1,

that is the n-th coordinate of σ(ωωω) is equal to the
n+ 1-th coordinate of ωωω. That is for a stationary process:

(6) P
(
σ−1E

)
= P(E ), ∀E ∈ F .

Definition 3.3

For a sequence {ξk} the dynamical system (Ω, F ,P, σ)
constructed on the last three slides is called the
canonical dynamical system .
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Stationary Processes

Example 3.4
If X = (Xn) is iid then it is stationary.

Let X = {Xn}∞
n=0

be a Markov chain with stationary
distribution π. If we choose the initial element X0

according to π then X is stationary.

Let Y = {Yn}n ∈ Z and let c1, . . . , ck ∈ R. Then

for Xn :=
k∑

ℓ=1

cℓYn−ℓ is a stationary process called

moving averages with c1, . . . , ck .
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Recall: Push forward measure

Let X ,Y be metric spaces. Given a measure µ on X

and a map T : X → Y . The push forward measure is

(7) T∗µ(A) := µ
(
T−1A

)
for A ⊂ Y .

Clearly, T∗µ is a measure and if T and µ are Borel then
T∗µ is also a Borel measure.
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Recall: Push forward measure (cont.)

Theorem 4.1
Let T : X → Y be a Borel mapping, µ is a Borel
measure on X, and g is a non-negative Borel function on
Y . Then

(8)
∫
gdT∗µ =

∫
(g ◦ T )dµ.
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Invariant measure

Consider the special case when X = Y :

Definition 4.2
Let T : X → X , B a σ-algebra on X finally, let and µ be
a probability measure on the measurable space (X , B).
We say that µ is an invariant measure if T−1A ∈ B for
every A ∈ B and

(9) T∗µ = µ that is µ(A) = µ(T−1A), ∀A ∈ B .
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Definitions

Then it follows from (8) that

(10)
∫
g(x)dµ(x) =

∫
g(T (x))dµ(x) ,

where g is a non-negative Borel function.

Definition 4.3
Let M(X ) be the set of probability measures on X and
we write MT (X ) for the subset of
invariant probability measures .
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Example 4.4

Let X1 := S1 = {z ∈ C : |z | = 1} and A1 be the Borel
σ-algebra on S1. Let µ1 be the normalized length on S1.

Let X2 := [−1, 1], A2 be the Borel σ-algebra on [−1, 1]

µ2(K ) :=
arclength(h−1(K ))

2π
=

∫

K

1

π
√
1 − x 2

dx

where h(z) := Re(z). Further, let ϕ : S1 → S1,
P : [−1, 1] → [−1, 1]:

ϕ(z) := z2 and P(x) := 2x 2 − 1.

Then P is a factor of ϕ . (See the Figure on the next
slide.)
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(−1,−1)

(1, 1)

P (x) = 2x2 − 1

y

x

R
2

K

µ2(K) :=
arclength(h−1(K))

2π

C

z

ϕ(z) := z2

aP (a)

α

α

i

−1

S1 = {z : |z| = 1}

2 (cosα)2 − 1 = cos(2α)

P (Re(z)) = Re(z2)

h(z) := Re(z)

for K ⊂ [−1, 1]:

commutes

S1 S1

[−1, 1] [−1, 1]

ϕ

P

h h
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Weak ∗-topology on C(X )∗

As usual we write C(X ) for the Banach space of
continuous real valued functions on the compact metric
space X endowed with the sup norm. We denote the
dual space of C(X ) by C(X )∗. That is C(X )∗ is the set
of continuous linear functionals on α : C(X ) → R. The
weak ∗-topology on C(X )∗ is generated by the sets:

U(f , ε, α0) := {α ∈ C(X )∗ : |α(f )− α0(f )| < ε} ,

where f ∈ C(X ), ε > 0.
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Weak ∗-topology on C(X )∗ II
The reason that we (very much) like the weak ∗-topology
is that:

Lemma 4.5
If C(X ) is separable then any closed ball in C(X )∗ is
compact.

Theorem 4.6 (Riesz Repezentation Theorem)

We write αµ(f ) :=
∫
fdµ for a µ ∈ M(X ). Then µ ↔ αµ

is a bijection between M(X ) and

{α ∈ C(X )∗ : α(1) = 1 and α(f ) ≥ 0 if f ≥ 0} .
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Using this identification we often write µ when we mean
αµ. The topology on M(X ) generated by the weak
∗-topology on C(X )∗ is called weak topology on M(X ).
It is easy to verify that

Lemma 4.7
Let {fn}∞

n=1
be a dense subset of C(X ). Then the weak

topology on M(X ) is equivalent to the topology defined
by the metric

d(µ, ν) :=
∞∑

n=1

2−n‖fn‖−1

∣∣∣∣
∫
fndµ −

∫
fndν

∣∣∣∣ .

Károly Simon (TU Budapest) Markov Processes & Martingales D File 27 / 84

Using Cantor diagonal method and the previous lemma,
one can easily see that

Lemma 4.8
Let X be compact. Then M(X ) is compact, convex in
the weak topology.

Theorem 4.9
Let X be compact and let T : X → X be continuous.
Then MT (X ) is a non-empty compact convex subset of
M(X ) (in the weak topology).
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Proof.
One can easily see that T∗ : M → M is a
homeomorphism. (Recall: We always mean that M(X )
is a topological space endowed with the weak topology.)
Clearly, MT (X ) = {µ ∈ M(X ) : T∗µ = µ}. For an
arbitrary µ ∈ M(X ) let

µn :=
1

n

(
µ+ T∗µ+ · · ·+ T n−1

∗ µ
)

.

By compactness we can find a convergent subsequence
µnk → µ′. It is straightforward that , µ′ ∈ MT (X ).

Károly Simon (TU Budapest) Markov Processes & Martingales D File 29 / 84

Definition 4.10
We say that a measure µ ∈ MT is ergodic if the
following holds:

(11) If T−1A = A then µ (A) is either 0 or 1.

We write ET for the set of ergodic measures.

Homework 1
Prove that this definition is equivalent to the following
one:
A measure µ is ergodic if for every f ∈ L1 the fact that f
is constant on µ-a.a. orbits {T n(x)}∞

n=0
is equivalent to

the fact that f is constant for µ-a.a. x .
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Another useful characterization of the ergodic measures
is as follows:

ET consists of the extremal points of MT .

Namely, MT is a convex set. An invariant measure µ is
ergodic iff it cannot be presented as a non-trivial convex
combination of invariant measures. Further, it follows
from Choquet Theorem that there exists an
ergodic decomposition of invariant measures . It says
that invariant measures can be presented as convex
combinations of ergodic measures (in the sense of (12)).
For a nice account about this click here in the pdf file.

Károly Simon (TU Budapest) Markov Processes & Martingales D File 31 / 84

Corollary 4.11 (Corollary of Choquet Theorem)

There is a probability measure η on MT (with the
σ-algebra generated by the weak topology) such that

(a) For every f : X → R continuous function:
(12)
∫
f (x)dµ(x) =

∫

ν∈MT




∫

x∈X

f (x)dν(x)


 dη(ν)

(b) η(ET ) = 1.
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Equivalent formulations of ergodicity

Let (X , A,m) be a probability space and let T : X → X
be measurable. Then the following are equivalent:

1 T is ergodic
2 If f is measurable and ∀x : f ◦ T (x) = f (x) holds

then f is constant.
3 If f is measurable and ∀x : f ◦ T (x) = f (x) holds

a.e x then f is constant a.e. x .
4 If f ∈ L2 and f ◦ T (x) = f (x) holds ∀x then f is

constant a.e.
5 If f ∈ L2 and f ◦ T (x) = f (x) holds for a.e. x then
f is constant a.e.

See Walters’ book [25, p. 28] and see Homeworks # 39.
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Birkhoff ET

Theorem 4.12

Assume that µ is ergodic and f ∈ L1(X , µ). Then
(13)

1

n

n−1∑

k=0

f (T kx) −→ ∫

X
f (x)dµ(x) for µ a.a. x . and in L1

Proof (Katzneson, B. Weiss)
First we assume that f ∈ L∞ and we prove only the a.s.
convergence.

f (x) := lim inf
n→∞

1

n
Snf (x) and f (x) := lim inf

n→∞
1

n
Snf (x),
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Proof of the Birkhoff ET cont.

Proof (Cont.)

where Snf (x) := f (x) + f (Tx) + · · ·+ f (T n−1x) . Using

that both f and f are constant on every orbit, that is

f (x) = f (Tx) and f (x) = f (Tx),

by ergodicity, we have

(14) f (x) = constant and f (x) = constant

Fix ε > 0 and M.
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Proof of the Birkhoff ET cont.

Proof (Cont.)
Let

n(x) := inf {n ≥ 1 : Snf (x) ≤ n(f + ε), }

and
A := AM,ε = {x : n(x) ≥ M} .

By definition for every ε:

(15) lim
M→∞

µ(A) = 0.
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Proof of the Birkhoff ET cont.

Proof (Cont.)

We partition the numbers {0, 1, . . . n − 1} into

I1 :=
⋃

T ix Ó∈A,i≤n−M

{
i , i + 1, . . . , i + n(T ix)

}
,

I2 :=
{
0 ≤ i ≤ n − M : T ix ∈ A

}
,

I3 := {n − M ≤ i ≤ n − 1}.
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Proof of the Birkhoff ET cont.

Proof (Cont.)

(16) Snf (x) =
∑

i∈I1

f (T ix) +
∑

i∈I2

f (T ix) +
∑

i∈I3

f (T ix).

Use the definition and divide both sides by n yields:

(17)
1

n
· Snf (x) ≤ #I1

n
· (f + ε) +

(
#I2

n
+
M

n

)

· ‖f ‖∞.

Observe that by T -invariance of µ, after integrating:
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Proof of the Birkhoff ET cont.

Proof (Cont.)

On the left hand side we get µ(A).

On the right hand side observe that

#I2 =
n−M∑

k=0

✶A(T
kx). Hence

(18)
∫ #I2

n
dµ =

n − M

n
µ(A)

n→∞−→ µ(A).

(19)
∫ #I1

n
dµ = 1 − n − M

n
µ(A)− M

n
n→∞−→ 1 − µ(A).
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Proof of the Birkhoff ET cont.

Proof (Cont.)

So, after taking the integral of both sides in (17) we get

(20)
∫
f (x)dµ(x) ≤

∫ #I1

n
dµ·(f +ε)+µ(A)‖f ‖∞+

M

n
‖f ‖∞.

First we let n → ∞ and use (18) and (19) to get

(21)
∫
f (x)dµ(x) ≤ (1 − µ(A)) · (f + ε) + µ(A)‖f ‖∞.

Secondly, we let M → ∞ (so µ(A) → 0 by (15)) finally,
let ε ↓ 0 to conclude that
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Proof of the Birkhoff ET cont.

Proof (Cont.)

(22)
∫
fdµ ≤ f .

Substituting f with −f we obtain that

(23) f ≤
∫
fdµ.

Which implies that

f = f =
∫
fdm a.s.�
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Rotation on the circle

Let Ω := S1 and F be the Borel σ-algebra and P be the
Lebesgue measure. Further let T : Ω → Ω be the
rotation with angle α. That is

Tx = x + α mod 1

Then T is measure preserving. (This is obvious.)

Theorem 4.13
Using the notation above, T is ergodic iff α Ó∈ Q.

Let f ∈ L2. Then f can be presented as

f (x) =
∞∑

n=−∞
cne

2πinx for P-a.a. x .
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Rotation on the circle (Cont.)

Further,

f (T (x)) =
∞∑

n=−∞

(
cne

2πinα
)
e2πinx n ∈ Z.

T is ergodic iff f (x) = f (Tx) for a.a. x . That is

(24) cn = cne
2πinα n ∈ Z.

If α irrational then (24) is equivalent to cn = 0 for
all n Ó= 0 which means that f is constant (a.s.)
which means that T is ergodic.

If α ∈ Q then we can find n ∈ Z \ {0} such that
1 = e2πinα = e−2πinα.
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Ration on the circle (Cont.)

For such an n consider the function

f (x) = e2πinαx + e−2πinαx = cos (2πnx) .

This is not constant but f (x) = f (Tx) so, in this case T
is not ergodic.

Károly Simon (TU Budapest) Markov Processes & Martingales D File 44 / 84

Definitions

Definition 4.14

Given a probability space (Ω, F ,P). Let T : Ω → Ω be a
measurable map.

The set A ∈ F is called invariant if T−1A = A.

I :=
{
A ∈ F : T−1A = A

}
the sub σ-algebra of

invariant sets.

We say that T is measure preserving if

P(A) = P(T−1A) holds for all A ∈ F .

In this case (Ω, F ,P,T ) is called
measure-preserving dynamical system .

See Homework # 44.
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Notation

Let (S, B) be a Polish space endowed with its Borel
σ-algebra. Given a sequence {ξk}∞

k=0
of (S, B)-valued

r.v. Define the corresponding canonical process {Xn} as
we did on slides 12-14 and the corresponding canonical
dynamical systems (Ω, F ,P, σ) (see Definition 3.3).
on the space also defined on slides 12-14.

Fact 4.15

X is stationary iff (Ω, F ,P, σ) is measure preserving.
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Ergodicity

Definition 4.16

We say that the stochastic process in Definition 46 is
ergodic if (Ω, F ,P, σ) is ergodic.

Remark 4.17
If the process {ξk} is stationary and ergodic with mean µ

then it follows from Birkhoff Ergodic Therem that

lim
n→∞

ξ1+···+ξn
n

= µ.
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Relation between Ergodicity and iid

Let (Ω, F ,P, σ) and X = (Xi) be as in Definition 46.

Fact 4.18

If (Xn)
∞
n=0

is iid then (Xn)
∞
n=0

is ergodic.

Proof
Let A ∈ I that is σ−1(A) = A. Then for every n:

A = σ−n(A) = {ω : σn(ω) ∈ A} ∈ σ(Xn,Xn+1, . . . ).

That is A ∈ T , where T is the tail σ-algebra. Hence
I ⊂ T . Since by Kolmogorov 0 − 1 law T is trivial, so I
is trivial. This implies that (Ω, F ,P, σ) is ergodic. So, by
the definition, {Xn} is ergodic.
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The organization of the rest of the Section

Definition 4.16 defines ergodicity for a general
stochasic process {ξk}. However, we have alraedy
defined ergodicity for Markov chain in the Course
"Stochastic processes". Below we answer the
question: Are these two definitions equivalent for
Markov chains?

However, before doing that we recall some theorems
proved in the Course "Stochastic processes".

However, even before that we give a little bit more
general definitions than the ones we learned in the
previous courses.
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Notation used in the subsection

Here we follow Klenke’s book [15, Chapter 17].

Let (S, B) be a Polish space endowed with its Borel
σ-algebra B
Let I ⊂ R be the index set. We assume that 0 ∈ I
and I is closed for addition.

Let X = (Xt)t∈I be (S, B)-valued stochastic
process.

We write F := (Ft)t∈I for the filtration defined by
X . That is F is an increasing sequence of σ-algebras
with Fs ⊂ Ft and Xs ∈ Fs for all s ≤ t.

Károly Simon (TU Budapest) Markov Processes & Martingales D File 51 / 84

Markov process: the definition

Definition

We say that X = (Xt)t∈I is a time-homogeneous Markov
process with distributions (Px)x∈S on the space (Ω, A) if

∀x ∈ S, X is a stochastic process on (Ω, A,Px),
with Px (X0 = x) = 1.

The map

κ : S × BI → [0, 1], κ(x ,A) := Px (X ∈ A)

is a stochastic kernel. (See slide # 54.)
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Markov process: the definition (Cont.)

Definition (Cont.)

X has the time-homogeneous Markov Property
(MP). This means that

(25) ∀B ∈ B, ∀x ∈ S, s, t ∈ I,

Px (Xt+s ∈ B|Fs) = κt(Xs ,B) ,

where for t ∈ I, the map κt : S × B → [0, 1] is the
so called transition kernel defined by:

(26) ∀x ∈ E , B ∈ B κt(x ,B) :=

κ
(
x ,

{
y ∈ SI : y(t) ∈ B

})
=Px (Xt ∈ B) ,
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Stochastic kernel

where κ is a stochastic kernel defined below. Consider
the measurable spaces (S, B) and

(
SI , BI)

. The map

κ : S × BI → [0, 1]

κ(x ,A) := Px (X ∈ A) , ∀A ∈ BI

is a stochastic kernel or Markov kernel . It satisfies

for every fixed Borel set A ∈ BI the map,
x Ô→ κ(x ,A) is B-measurable.

for every fixed x ∈ S, the map A Ô→ κ(x ,A) is a
Borel probability measure on the measurable space(
SI , BI)

.
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Markov process: the definition (Cont.)

Definition (Cont.)
The family

(κt(x ,B), t ∈ I, x ∈ S,B ∈ B)

is the family of transition probabilities of X .
If S is countable then X is a
discrete Markov process .

We write Ex for the expectation w.r.t. Px .

If I = N = {0, 1, 2, . . . } then X is a
Markov chain . In this case κn is the family of
n-steps probabilities.
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Recall: Markov chains

In the course Stochastic Processes in File B we called a
Markov chain ergodic if it is

Definition 5.1 (Ergodic Markov Chain)

irreducible,

every state is aperiodic,

every state is positive recurrent,

If a state is both aperiodic and positive recurrent then
the state was called ergodic. In the course Stochastic
Processes in File B we proved the following two theorems:
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Recall: Markov chains (Cont.)

Theorem 5.2
For an ergodic Markov Chain with transition probability
matrix P = p(i , j) there exists a unique stationary
distribution π

(27) lim
n→∞ pn(j , i) = π(i) = 1

Ei [Ti ]
,

where
pn(j , i) is the probability that starting from j we are
in i in n steps,

Ti ≥ 1 is the first time we get to i and

Ej : the expectation conditional on starting from j.
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Recall: Markov chains (Cont.)

Theorem 5.3

If

ξk is an ergodic Markov chain with (countable )
state space S and

stationary distribution π and

f : S → R is a function satisfying:
∫ |f (i)|dπ(i) =

∑

i
|f (i)|π(i) < ∞

Then almost surely:

(28) lim
n→∞

1

n

n∑

k=1

f (ξk) =
∑

x∈S

f (x)π(x) =
∫

S
f (x)dπ(x).
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Theorem 5.3 vs. Birkhoff ET (Cont.)

Let us define f̃ : Ω → R,

f̃ (ωωω) := f (ω1)

Then related to the left hand side (28):

1

n

n∑

k=1

f (ξk) =
1

n

n−1∑

k=0

f̃
(
σkωωω

)
.

Related to the right hand side (28):

∫

S
f (x)dπ(x) =

∑

x∈S

f (x)π(x) =
∑

ω1=x
f̃ (ωωω)P (ω1 = x)

=
∑

x∈S

∫

ω1=x

f̃ (ωωω)dP (ωωω) =
∫

Ω
f̃ (ωωω)dP (ωωω) .
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Concluion

This indicates that.

Theorem 5.4

For every Markov chain which is ergodic in sense of
Definition 5.1 the corresponding cannonical dynamical
system (Ω, F ,P, σ) is also ergodic.

The proof can be found in [15, Example 20.17] So, the
definition of ergodicity we gave above is in coherence
with that of we gave in Definition 5.1.

Be careful! In the Theorem above the opposite
implication is NOT true!
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1 A number of boring definitions

2 Kolmogorov Extension Theorem

3 Stationary processes

4 Birkhoff pointwise Ergodic Theorem
Invariant and ergodic measures
Weak ∗-topology
existence of invariant measure
Birkhoff ET Theorem

5 Revisit Markov chains

6 Martingal CHT
Recall: CLT for iid with finite mean and variance
CLT for martingales with stationary L2 differences
CLT for Markov chains
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Recall: Central Limit Theorem as you
learned in the course Probability I

Theorem 6.1 (Central Limit Theorem (CLT))

Let X1,X2, . . . be i.i.d. with E [Xi ] = µ and
var(Xi) = σ2 ∈ (0, ∞). If Sn = X1 + · · ·+ Xn then

(29) Sn−nµ√
n·σ ⇒ κ ,

where κ is the standard normal distribution and ”⇒ ”
means the convergence in distribution.
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Recall: Central Limit Theorem as you
learned in the course Probability I (cont.)

That is

(30) lim
n→∞P

(
Sn−nµ√

n·σ < a
)
= Φ(a) ,

where Φ is the distribution function of the standard
normal distribution.

The following theorem is the martingale Central Limit
Theorem (CLT). Although we do not have time to prove
it (the proof is available in[24, Chapter 6.5]) we will
study how to apply it.
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CLT for Martingales

Theorem 6.2

Let ξ1, ξ2, . . . . . . be an ergodic stationary sequence of

random variables with E [ξn] = 0 . We assume that there

exist a square integrable martingale (Mn)
∞
n=0

such that
Mn − Mn−1 = ξn, n = 1, 2, . . . . Then the CLT holds for
ξ1, ξ2, . . . . That is

(31)
ξ1 + · · ·+ ξn√

n
⇒ N (0, σ2),

where σ2 = E
[
ξ2

1

]
and ”⇒ ” means the convergence in

distribution.
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CHT for Martingales

Corollary 6.3

Let Xn be a stationary stochastic process with
E [Xn] = 0. Assume that ∃ξn, ηn such that:

(A1) ξn is a square integrable martingale difference
with E [ξn] = 0, Var(ξn) = σ2 (like in
Theorem 6.2).

(A2) ηn is small: E




(
n∑

j=1

ηj

)2

 = o(n) (little o n).

(A3) Xn = ξn+1 + ηn+1 for all n.

Then X1+···+Xn√
n

⇒ N (0, σ2) , where ”⇒ ” means the

convergence in distribution.
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Proof (Cont.)

Proof of the Corollary (Cont.)

Let Hn
ε :=





∣∣∣∣
n∑

i=1
ηi+1

∣∣∣∣
√

n
≥ ε




. Observe that by Markov

inequality:

(32) hn
ε := P (Hn

ε ) ≤ 1

ε2
E




(
n∑

i=1

ηi+1

)2

n




So, by Assumption (A2) we have

(33) lim
n→∞ hn

ε = 0.
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Proof (Cont.)

Proof of the Corollary (Cont.)

(34)

pn :=P




n∑

i=1

Xi

√
n

< a


=P




n∑

i=1

ξi+1

√
n

< a −
n∑

i=1

ηi+1

√
n
;Hn

ε




+ P




n∑

i=1

ξi+1

√
n

< a −
n∑

i=1

ηi+1

√
n
; (Hn

ε )
c



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Proof (Cont.)

Proof of the Corollary (Cont.)
From here we obtain that

P




n∑

i=1

ξi+1

√
n

< a − ε


 − hε

n ≤ pn

≤ P




n∑

i=1

ξi+1

√
n

< a + ε


+ hε

n
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Proof (Cont.)

Proof of the Corollary (Cont.)
Now we let n → ∞ and then ε ↓ 0 to get by Theorem
6.2:

(35)

n∑

i=1

Xi

√
n

⇒ N (0, σ2).�
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Find a representation like in (A3)

Given a stationary process X = {Xn} with zero mean.
That is E [Xn] = 0 for all n. Our next assumption is:

(A4) The following rv. exist and square integrable:

(36) Zn :=
∞∑

ℓ=n
E [Xℓ|Fn]

Claim 1

(a) Mn := Zn +
∑

i≤n−1

Xi is a martingale.

(b) E
[
Z 2

n+1

]
= o(n).

Károly Simon (TU Budapest) Markov Processes & Martingales D File 70 / 84

Find a representation like in (A3) (Cont.)

Proof of part (a) of the Claim

Mn ∈ Fn by definition. E [Mn+1|Fn] = Mn by the tower
property and the definition. Mn ∈ L1 because Zn ∈ L1

and
∑

i≤n−1

Xi ∈ L1.

Proof of part (b) of the Claim

This is immediate from the fact that {Xn} is stationary
so {Zn} is stationary, so E

[
Z 2

n+1

]
= E

[
Z 2

1

]
< ∞.

Károly Simon (TU Budapest) Markov Processes & Martingales D File 71 / 84

Find a representation like in (A3) (Cont.)

Assume that assumption (A4) holds. Let

(37) ξn+1 := Zn+1 − E [Zn+1|Fn] = Zn+1 − Zn + Xn

and
ηn+1 := Zn − Zn+1.

Then
Xn = ξn+1 + ηn+1

and ξn = Mn+1 − Mn, and ξn ∈ L2, further

E




(
n∑

i=1

ηi

)2

 = E

[
(Z1 − Zn+1)

2
]
= o(n) .
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Find a representation like in (A3) (Cont.)

This shows that

Theorem 6.4
If X = (Xn) is a stationary process with zero mean and
we assume (A4) on slide # 70. Then the CLT holds for
(Xn) with σ2 = Var(Xn):

(38)

n∑

i=1

Xi

√
n

⇒ N (0, σ2),

where ”⇒ ” means the convergence in distribution.
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Application for Markov Chains

Given a stationary ergodic Markov chain X with finite or
countable state space S. The probability transition
matrix is (p(x , y))x ,y∈S and the unique stationary
distribution is π. On L1(S, π) we define the operator P
by

(Pf )(i) :=
∑

j∈S

p(i , j)f (j).

Remeber that on slide # 10 in File A we have already
introduced this operator. Let f : S → R, f ∈ L2(π),
satisfying

(39) Eπ [f ] :=
∑

i∈S

f (i)π(i) = 0
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Application for Markov Chains (Cont.)

We define
Yi := f (Xi).

We assume

(A5) ∃U : S → R, U ∈ L2(π) such that
(40)

((I − P) · U)(i) = f (i), for all i ∈ S.

Then like in (36):

(41) Zn =
∞∑

j=0

E [f (Xn+j)|Xn] =
∞∑

j=0

(P j · f)(Xn),
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Application for Markov Chains (Cont.)

where we consider f as a vector f indexed by the
elements of S and (P j · f)(Xn) is the Xn ∈ S-th
component of the vector (P j · f). Observe that

lim
n→∞Pn =: Π

where Π is a matrix which for which all the rows are
equal to π. Then

(42)
∞∑

k=0

Pk(I − P) = I − lim
n→∞Pn+1 = I − Π.

Apply this, (40) and (41) to obtain
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Application for Markov Chains (Cont.)

Zn = U(Xn) − Eπ [U]

It follows from (37) that

ξn+1 = Zn+1 −Zn + f (Xn) = U(Xn+1) − U(Xn) + f (Xn) .

is an L2 martingale difference. Hence, by Corollary 6.3
we have:

Károly Simon (TU Budapest) Markov Processes & Martingales D File 77 / 84

Application for Markov Chains (Cont.)

Theorem 6.5 (Markov chain CLT)
Let Xn be a stationary and ergodic Markov chain with
stationary distribution π. Let f : S → R, f ∈ L2(π), and
Eπ [f ] = 0. Further we assume the assumption (A5) on
slide #75 holds . Then

(43) f (X1)+···+f (Xn)√
n

⇒ N (0, σ2) ,

where

σ2 = Eπ

[
ξ2

1

]
= Eπ

[
(U(X1) − U(X0) + f (X0))

2
]
.

We compute all of these on a simple example:
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Example

Let S := {1, 2} and the transition probability matrix

P :=


 p q
q p


 , p + q = 1, p, q ≥ 0.

Then π =




1

2
1

2


. Let f


 1

2


 =


 1

−1


. Then

Eπ [f ] = 0 and I − P =


 q −q

−q q




(44) (I − P) · U =


 q −q

−q q


 ·


 U1

U2


 =


 1

−1



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Example (Cont.

The solution of (44) is U =




1

q
+ a

a


 for every a, w.l.g.

we may choose a = 0 (see the next formula).

σ2 =Eπ

[
(U(X1) − U(X0) + f (X0))

2
]

=
1

2
· p ·

(
1

q
− 1

q
+ 1

)2

+
1

2
· q ·

(

0 − 1

q
+ 1

)2

+
1

2
· q ·

(
1

q
− 0 − 1

)2

+
1

2
· p · (0 − 0 − 1)2

= p
q

.
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Example (Cont.)

Conclusion: Let

Sn := (#visit to 1) − (#visit to − 1).

Then
Sn√
n

⇒ N (0, σ2).

p ↓ 0: σ ↓ 0 (determinisztikus)

p = 1

2
: σ = 1 the digits 1, −1 appear with 1

2
− 1

2

probability

p ↑ 1: sign change happens rarely, σ → ∞.
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